Variational approach to a non-local identification problem related to non-linear ion transport

Author(s):  
Alemdar Hasanov
Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hannes Malcha ◽  
Hermann Nicolai

Abstract Supersymmetric Yang-Mills theories can be characterized by a non-local and non-linear transformation of the bosonic fields (Nicolai map) mapping the interacting functional measure to that of a free theory, such that the Jacobi determinant of the transformation equals the product of the fermionic determinants obtained by integrating out the gauginos and ghosts at least on the gauge hypersurface. While this transformation has been known so far only for the Landau gauge and to third order in the Yang-Mills coupling, we here extend the construction to a large class of (possibly non-linear and non-local) gauges, and exhibit the conditions for all statements to remain valid off the gauge hypersurface. Finally, we present explicit results to second order in the axial gauge and to fourth order in the Landau gauge.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 760 ◽  
Author(s):  
Johan Anderson ◽  
Sara Moradi ◽  
Tariq Rafiq

The numerical solutions to a non-linear Fractional Fokker–Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space. Distribution functions are found using numerical means for varying degrees of fractionality of the stable Lévy distribution as solutions to the FFP equation. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy and modified transport coefficient. The transport coefficient significantly increases with decreasing fractality which is corroborated by analysis of experimental data.


2018 ◽  
Vol 20 (7) ◽  
pp. 5112-5116 ◽  
Author(s):  
M. Roman ◽  
S. Taj ◽  
M. Gutowski ◽  
M. R. S. McCoustra ◽  
A. C. Dunn ◽  
...  

We show that solids displaying spontaneous dipole orientation possess quite general non-local and non-linear characteristics expressed through their internal electric fields.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 673
Author(s):  
Gioacchino Alotta ◽  
Emanuela Bologna ◽  
Massimiliano Zingales

Non-local time evolution of material stress/strain is often referred to as material hereditariness. In this paper, the widely used non-linear approach to single integral time non-local mechanics named quasi-linear approach is proposed in the context of fractional differential calculus. The non-linear model of the springpot is defined in terms of a single integral with separable kernel endowed with a non-linear transform of the state variable that allows for the use of Boltzmann superposition. The model represents a self-similar hierarchy that allows for a time-invariance as the result of the application of the conservation laws at any resolution scale. It is shown that the non-linear springpot possess an equivalent mechanical hierarchy in terms of a functionally-graded elastic column resting on viscous dashpots with power-law decay of the material properties. Some numerical applications are reported to show the capabilities of the proposed model.


1994 ◽  
Vol 31 (A) ◽  
pp. 351-362 ◽  
Author(s):  
Donatas Surgailis ◽  
Wojbor A. Woyczynski

We study the scaling limit of random fields which are solutions of a non-linear partial differential equation, known as the Burgers equation, under stochastic initial conditions. These are assumed to be of a non-local shot noise type and driven by a Cox process. Previous work by Bulinskii and Molchanov (1991), Surgailis and Woyczynski (1993a), and Funaki et al. (1994) concentrated on the case of local shot noise data which permitted use of techniques from the theory of random fields with finite range dependence. Those are not available for the non-local case being considered in this paper.Burgers' equation is known to describe various physical phenomena such as non-linear and shock waves, distribution of self-gravitating matter in the universe, and other flow satisfying conservation laws (see e.g. Woyczynski (1993)).


Sign in / Sign up

Export Citation Format

Share Document